The Management University of Africa

Sponsored by the Kenya Institute of Management

UNDERGRADUATE UNIVERSITY EXAMINATIONS SCHOOL OF MANAGEMENT AND LEADERSHIP DEGREE OF BACHELOR OF ARTS EDUCATION

MTH 121: CALCULUS 1-DIFFERENTIAL

DATE: 8TH APRIL 2022

DURATION: 2 HOURS

MAXIMUM MARKS: 70

INSTRUCTIONS:

- 1. Write your registration number on the answer booklet.
- 2. **DO NOT** write on this question paper.
- 3. This paper contains SIX (6) questions.
- 4. Question **ONE** is compulsory.
- 5. Answer any other THREE questions.
- 6. Question ONE carries 25 MARKS and the rest carry 15 MARKS each.
- 7. Write all your answers in the Examination answer booklet provided.

MTH 121: Page 1 of 3

QUESTION ONE

a) The side of a cube increases by 5%. Find the corresponding percentage increase in the volume. (7marks)

b) Evaluate $\lim_{x\to -2}(x^2-1)$ (6marks)

c) Find $\frac{dy}{dx}(2x^2\cos 3x)$ (5marks)

d) Differentiate from the first principle

 $F(x)=2x^3+3 (7marks)$

QUESTION TWO

- a) Find the equation of the tangent to the curve $y = cx^3-2x+1$ at (-1,2) (6marks)
- b) A particle projected from a fixed point with velocity 10ms⁻¹ moves in a straight line such that its velocity after a time t seconds is v=bt²+7t+c where b and c are constants. One second after projection its acceleration is 1m/s. find the value of b and c (9marks)

QUESTION THREE

a) Differentiate from the first principles $f_{(x)} = 2x^2 + 3x^2$ (6marks)

b) Find the stationary points of $y = \frac{1}{3}x^3 - 2x^2 + 3x$ and identify their nature.

(9marks)

QUESTION FOUR

a) Differentiate with respect to x

a.
$$y = (x-3)(x^2+7x-1)$$
 (4marks)

b) Use the chain rule to differentiate $\frac{1}{(1-5x)^2}$ (5marks)

c) Give that $x^2-3xy+2y^2-2x=4$. Find the value of $\frac{dy}{dx}$ at the point (1-1) (6marks)

QUESTION FIVE

a) Find
$$\frac{dy}{dx}$$
 $y = (2x^2 - 1)(x^2 + 3)$ (7marks)

b) If $f(x) = x^3 + x^2 - 5x - 5$ find the integral on which f is increasing and the interval on which f is increasing. (8marks)

QUESTION SIX

100cm of fencing is to be used to make a rectangular enclosure. Find the greatest possible area of the enclosure. (15marks)

