The Management University of Africa

UNDERGRADUATE UNIVERSITY EXAMINATIONS SCHOOL OF MANAGEMENT AND LEADERSHIP DEGREE OF BACHELOR OF EDUCATION ARTS

MTH 222: CALCULUS II - Integral

DATE: 25TH JULY 2022

DURATION: 2 HOURS

MAXIMUM MARKS: 70

INSTRUCTIONS:

- 1. Write your registration number on the answer booklet.
- 2. DO NOT write on this question paper.
- 3. This paper contains SIX (6) questions.
- 4. Question **ONE** is compulsory.
- 5. Answer any other THREE questions.
- 6. Question ONE carries 25 MARKS and the rest carry 15 MARKS each.
- 7. Write all your answers in the Examination answer booklet provided.

QUESTION ONE

(25 MARKS)

- a) The gradient function for a curve is given by $3x^2 + 4x 3$. If the curve passes through the point (1, 4) evaluate;
 - i. The equation of the curve.

(3 marks)

The equation of the tangent to the curve at (1, 4)ii.

(3 marks)

b) Compute the area bounded by the x - axis, the curve $y = 3x^2 + 2x - 2$ and the lines x = 1 and x = 3(4 marks)

c) Evaluate

$$\int \frac{x^3 + 4x^5 - 3x^2}{x^3} \ dx$$

(3 marks)

d) Compute the value of k if

$$\int_0^2 (kx^3 - 3x^2) dx = 16$$

(4 marks)

- e) A particle moves in a straight line from a fixed point. Its velocity $V ms^{-1}$ after tseconds is given by $V = 9t^2 - 4t + 1$. Calculate the distance travelled by the particle during the third second. (4 marks)
- f) Evaluate

$$\int x \sin(x^2) \, dx$$

(4 marks)

QUESTION TWO

 $\int x \sin x \, dx$ a) Evaluate

(3 marks)

b) Evaluate

$$\int x \ln x \, dx$$

(4 marks)

- c) Consider the region bounded by the graphs of $f(x) = x^2 + 1$ and $g(x) = 3 x^2$.
- d) Write the integral for the volume of the solid of revolution obtained by rotating this region about the x - axis. (8 marks)

QUESTION THREE

a) Complete the table below for the function $y = x^2 - 3x + 6$

in the range $-2 \le x \le 8$.

(2 marks)

)	<	-2	-1	0	1	2	3	4	5	6	7	8
	Ý											

- b) Use the trapezoidal rule with 10 trapezia to estimate the area bounded by the curve, $y = x^2 3x + 6$, the lines x = -2, x = 8, and the x axis (4 marks)
- c) Use mid-ordinate rule with 5 strips to estimate the area in (b) above (4 marks)
- d) Use integration to find the area

(5 marks)

QUESTION FOUR

The diagram below shows a straight line intersecting with the curve at the points P and Q. The line also cuts x - axis at (7, 0) and y - axis at (0, 7).

a) Evaluate the equation of the straight line in the form y = mx + c

(2 marks)

b) Compute the coordinates of P and Q

(4 marks)

c) Use integration to calculate the area of the shaded region

(9 marks)

QUESTION FIVE

a) Evaluate $\int \sin^{-1} x \, dx$ (5 marks)

b) Compute the integral $\int \sin^3 x \cos^2 x \ dx$ (5 marks)

c) The region under the curve $y = \sin x$ and above the x - axis for $0 \le x \le \pi$) is revolved around the y - axis. Compute the volume (5 marks)

QUESTION SIX

a) Compute the integral
$$\int \frac{x+1}{x^2(x-1)} dx$$
 (8 marks)

- b) A tank contains 200 L of salt water with a concentration of 4g/L. Salt water with a concentration of 3g/L is being pumped into the tank at the rate of 8L/min, and the tank is being emptied at the rate of 8 L/min. Assume the contents of the tank are being mixed thoroughly and continuously. Let S(t) be the amount of salt (measured in grams) in the tank at time t (measured in minutes).
 - i. Compute the amount of salt in the tank at time t=0. (1 mark)
 - ii. Evaluate the rate at which salt enters the tank (2 marks)
 - iii. Evaluate the rate at which salt leaves the tank at time t (2 marks)
 - iv. Compute $\frac{ds}{dt}$, the net rate of change of salt in the tank at time t (2 marks)